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Abstract. Off-diagonal profilesφod(v) of local densities (e.g. order parameter or energy
density) are calculated at the bulk critical point, by conformal methods, on a strip with
transverse coordinatev, for different types of boundary conditions (free, fixed and mixed). Such
profiles, which are defined by the non-vanishing matrix element〈0|φ̂(v)|φ〉 of the appropriate
operatorφ̂(v) between the ground state and the corresponding lowest excited state of the strip
Hamiltonian, enter into the expression of two-point correlation functions on a strip. They are
of interest in the finite-size scaling study of bulk and surface critical behaviour since they allow
the elimination of regular contributions. The conformal profiles, which are obtained through
a conformal transformation of the correlation functions from the half-plane to the strip, are in
agreement with the results of a direct calculation, for the energy density of the two-dimensional
Ising model.

Following the pioneering work of Fisher and de Gennes [1], the study of order parameter
and energy density profiles near surfaces has been an active field of research during the
past years. These profiles have been calculated at, and near the critical point, in the mean-
field approximation [2], using field-theoretical approaches [3] and through exact solutions
[4, 5]. Much progress has also been achieved in their calculation at bulk criticality in
two-dimensional (2D) systems making use of conformal techniques [6–12].

In a semi-infinite 2D system, the profileφ(y) of a fluctuating quantity, such as the order
parameter or the energy density, is obtained in the transfer matrix formalism as the diagonal
matrix element〈0|φ̂(y)|0〉 of the corresponding operator̂φ in the ground state|0〉 of the
HamiltonianH = − ln T , whereT denotes the transfer operator along the surface.

On a strip of infinite length and finite widthL, one may also consider the off-diagonal
profile φod(v), wherev is the transverse coordinate. The profile is then defined as the off-
diagonal matrix element〈0|φ̂(v)|φ〉 between the ground state|0〉 of the HamiltonianH on
the strip and its lowest excited state|φ〉 leading to a non-vanishing matrix element.

These off-diagonal profiles are commonly used at the bulk critical point to obtain
information about the surface and bulk critical behaviour via finite-size scaling, while
avoiding the regular terms which contribute to the diagonal ones. Actually, in the absence
of an external symmetry-breaking field, an off-diagonal matrix element has to be used to
study the scaling behaviour of the order parameter since the diagonal one vanishes, due to
symmetry. They are also of interest because of their high degree of universality. One may
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mention two recent studies where off-diagonal profiles are considered at bulk criticality: the
spin 1/2–spin 1 Ising quantum chain in [13] and the random Ising quantum chain in [14].

In the following, the scaling form of such off-diagonal matrix elements is obtained
at the bulk critical point for 2D conformally invariant systems. It is deduced from the
asymptotic behaviour of the appropriate two-point correlation function in the half-space
after a conformal transformation to the strip geometry. We consider first symmetric and
then asymmetric boundary conditions on the strip and compare our results to some exact
expressions of the energy-density profiles, obtained in the appendix, for the Ising model
in the extreme anisotropic limit. Since we use conformal methods, non-invariant boundary
conditions, like a finite surface field for which an interesting scaling behaviour has been
recently observed [15, 16], and off-critical systems are here excluded.

Let us first briefly review the Fisher–de Gennes result and its consequence for the profile
on a strip. We consider a non-vanishing profileφ(y) on a semi-infinite 2D conformally
invariant sytem at its critical point with a surface aty = 0. It may be the energy
density profile with any type of uniform boundary conditions or the order parameter profile
with fixed boundary conditions. The problem involves a single length scale, the distance
y from the surface. Under a length rescaling by a factorb, the profile transforms as
φ(y/b) = bxφφ(y) so that

φ(y) = Ay−xφ (1)

where xφ is the bulk scaling dimension of̂φ. Now, making use of the conformal
transformationw = (L/π) ln z, with z = x + iy = ρ eiθ andw = u+ iv one obtains

ρ = exp
(πu
L

)
θ = πv

L
(2)

and the local dilatation factor isb(z) = |dw/dz|−1 = πρ/L. The half-planey > 0 is
transformed into a strip−∞ < u < +∞, 0 < v < L with the same boundary conditions
as the half-space on both edges [17]. The profile transforms as [18]

φ(w) = b(z)xφφ(z) (3)

so that [6]

φ(v) = A
[
L

π
sin
(πv
L

)]−xφ
. (4)

One may notice that the surface critical behaviour is hidden in the sine variation. At a
fixed distancel � L from the surface the profile behaves as

φ(l) ' Al (1+ 1
6π

2l2xφ L
−2+ · · ·) (5)

in agreement with the Fisher-de Gennes conjecture which gives aL−d correction term [1]
with a universal amplitude [9]. Generally, the exponentd is expected to give the scaling
dimensionxs

φ of φ̂ at any surface transition leading to a non-vanishing profile in the semi-
infinite critical system [7, 9, 19–21]. TheO(N) model at the special transition (forN < 1
in 2D) provides a counter-example, the surface energy exponent being smaller thand in
this case [12, 22, 23]†.

Let us now turn to the calculation of the off-diagonal matrix element. On the critical
semi-infinite system, conformal invariance strongly constrains the form of the connected
two-point correlation function,Gcon

φφ (x1 − x2, y1, y2). Applying an infinitesimal special
conformal transformation which preserves the surface geometry, one obtains a system of

† We thank E Eisenriegler for pointing out this exception to us.
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partial differential equations forGcon
φφ , from which the following scaling form is deduced

[24]

Gcon
φφ (x1− x2, y1, y2) = (y1y2)

−xφg(ω) ω = (x1− x2)
2+ (y1− y2)

2

y1y2
. (6)

Whenω � 1, ordinary scaling leads tog(ω) ∼ ω−xs
φ wherexs

φ is the scaling dimension of

φ̂ at the surface. This limit also corresponds toρ1 � ρ2 where, using polar coordinates,
6 may be rewritten as

Gcon
φφ (ρ1, ρ2, θ1, θ2) ∼ (ρ1ρ2)

−xφ
(
ρ1

ρ2

)−xs
φ

(sinθ1 sinθ2)
xs
φ−xφ . (7)

We now consider the connected two-point function at bulk criticality in the strip geometry.
In the same limit, it can be obtained through the conformal transformation of (7) from the
half-plane to the strip geometry with [17]

Gφφ(w1, w2) = b(z1)
xφ b(z2)

xφGφφ(z1, z2) (8)

giving:

Gcon
φφ (u1− u2, v1, v2) =

(π
L

)2xφ
(ρ1ρ2)

xφGcon
φφ (ρ1, ρ2, θ1, θ2)

∼
(π
L

)2xφ
exp

[
−πx

s
φ

L
(u1− u2)

] [
sin
(πv1

L

)
sin
(πv2

L

)]xs
φ−xφ

. (9)

On the strip, making use of the transfer operator e−H, it can also be written as an expansion
over the eigenstates|n〉 of the critical HamiltonianH with eigenvaluesEn and ground state
energyE0

Gcon
φφ (u1− u2, v1, v2) =

∑
n>0

〈0|φ̂(v1)|n〉〈n|φ̂(v2)|0〉 exp[−(En − E0)(u1− u2)]. (10)

In the limit ρ1 � ρ2 which corresponds tou1 � u2 on the strip, the sum is dominated by
the contribution of the lowest exited state|φ〉 with a non-vanishing matrix element so that

Gcon
φφ (u1− u2, v1, v2) ' 〈0|φ̂(v1)|φ〉〈φ|φ̂(v2)|0〉 exp[−(Eφ − E0)(u1− u2)]. (11)

Comparing with (9) we recover the gap-exponent relationEφ − E0 = πxs
φ/L [17] as a

by-product and we may identify the expression of the off-diagonal matrix element

φod(v) ∼
(
L

π

)−xφ [
sin
(πv
L

)]xs
φ−xφ

(12)

with symmetric boundary conditions on the strip. The off-diagonal energy-density profile
for the Ising model given in equation (A5) of the appendix, which is valid for symmetric
free or fixed boundary conditions, agrees with (12) in the continuum limit.

At a fixed distancel � L from the surface,φod(l), behaving asL−x
s
φ , is quite appropriate

to perform a finite-size scaling study since the regular term which appeared in (5) is now
avoided. One may notice that the diagonal profileφ(v) in (4) is formally recovered with
xs
φ = 0 in (12). Finally, in the half-plane limit (L→∞), the amplitude of the off-diagonal

profile vanishes. This is consistent with the scaling considerations leading to equation (1):
a non-vanishing profile on the semi-infinite system necessarily gives the diagonal profile (4)
on the strip.

Next we consider the case of mixed boundary conditions on the half-space. This means
having different scale-invariant boundary conditionsa andb on the positive and negative
x-axes, respectively, witha, b = f (free),+ or − (fixed). The plane-to-strip conformal
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transformation leads to different boundary conditionsa andb on opposite edges of the strip.
The method employed to determine the scaling behaviour of the two-point function in (6)
can no longer be used since it supposed translation invariance along thex-direction which
is now broken by the mixed boundary conditions on the surface. Fortunately, the two-
point correlation functions with mixed boundary conditions have been obtained explicitly
for the Ising model using conformal methods [11]:n-point correlation functions in the half-
space with mixed boundary conditions are determined by the same differential equation as
a particular 2n+ 2-point bulk correlation function. Using the results of Burkhardt and Xue
[11], whenρ1/ρ2� 1, the asymptotic spin–spin correlation functions read

G+−σσ ∼ (ρ1ρ2 sinθ1 sinθ2)
−1/8

[
cosθ1 cosθ2+ sin2 θ1 sin2 θ2

(
ρ2

ρ1

)
+ · · ·

]
G+fσσ ∼ (ρ1ρ2 sinθ1 sinθ2)

−1/8(cosθ1 cosθ2)
1/2

×
[

1+ 1

2
sinθ1 sinθ2 tan

(
θ1

2

)
tan

(
θ2

2

)
ρ2

ρ1
+ · · ·

] (13)

whereas the following expressions are obtained for the energy–energy correlation functions

G+−εε ∼ (ρ1ρ2 sinθ1 sinθ2)
−1

[
(1− 4 sin2 θ1)(1− 4 sin2 θ2)

+64 sin2 θ1 sin2 θ2 cosθ1 cosθ2

(
ρ2

ρ1

)
+ · · ·

]
G+fεε ∼ (ρ1ρ2 sinθ1 sinθ2)

−1

[
cosθ1 cosθ2+ 8 sin2 θ1 sin2 θ2

(
ρ2

ρ1

)
+ · · ·

]
.

(14)

Making use of the conformal transformation to the strip geometry as in the first line
of equation (9) and comparing to the expansion of the correlation function on the strip
with asymmetric boundary conditions, one may identify the profiles. Since the correlation
functions in (13) and (14) are the unconnected ones, the expansion in (10) now contains
the termn = 0. In the limit u1 − u2 � 1, the leading contribution is the product of the
diagonal profilesφ(v1)φ(v2), and the next term contains the product of the off-diagonal
ones, as before. In this way, one obtains

σ+−od (v) ∼
(
L

π

)−1/8 [
sin
(πv
L

)]15/8

σ
+f
od (v) ∼

(
L

π

)−1/8 [
sin
(πv
L

)]7/8 [
cos

(πv
2L

)]1/2
tan

(πv
2L

)
ε+−od (v) ∼

(
L

π

)−1

sin
(πv
L

)
cos

(πv
L

)
ε
+f
od (v) ∼

(
L

π

)−1

sin
(πv
L

)
(15)

for the off-diagonal order parameter and energy density profiles. The results of a direct
calculation of the off-diagonal energy density profiles, in equations (A6) and (A9) of the
appendix, are in agreement with the two last equations of (15) in the continuum limit.

Diagonal profiles on strips with asymmetric boundary conditions for the Ising,Q-state
Potts andO(N) models can be found in references [8, 10–12] where they were deduced
from the appropriate one-point functions in the half-plane.
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With mixed boundary conditions the correction term inρ2/ρ1 gives a first gap vanishing
asπ/L on the strip: the connection with surface exponents we had before is lost. Contrary
to the case of symmetric boundary conditions in equations (4) and (12), there is no simple
functional form adapted to the different boundary conditions. The diagonal profiles generally
contain a regular leading contribution in their surface finite-size scaling behaviour whereas
the off-diagonal ones behave asL−(x

s
φ)a,b with (xs

σ )+,− = (xs
ε)+,− = (xs

ε)f = 2 and
(xs
σ )f = 1/2.

One may notice that diagonal and off-diagonal profiles obtained in [14] for the random
Ising quantum chain are in quite good agreement with the conformal results given above
although the system, which is strongly anisotropic, isnot conformally invariant. It would
be interesting to check whether this is peculiar to the Ising model or if it holds true for
other 2D anisotropic systems as well.

We thank H Rieger, M Henkel and D Karevski for helpful discussions and E Eisenriegler
for a critical reading of the manuscript. FI is indebted to the Hungarian National Research
Fund for financial support under grants no OTKA TO12830, 17485 and 23642.

Appendix

In this appendix, we calculate the off-diagonal energy density profiles on a strip for the
Ising model with different boundary conditions. We work in the extreme anisotropic limit
[25] where the critical Hamiltonian reads

H = −1

2

[
L−1∑
j=1

σx(j)σx(j + 1)+
L−1∑
j=2

σz(j)+ h1σz(1)+ hLσz(L)
]

(A1)

whereσx(j) andσz(j) are Pauli matrices at sitej . The diagonization proceeds in two steps
[26, 27]: first the Hamiltonian is rewritten as a quadratic form in fermion operators,c†(j)
andc(j), using the Jordan–Wigner transformation [28] and then it is diagonalized through
a canonical transformation to new fermion operators,η

†
k andηk, such that

c(j) = 1

2

{∑
k

[ϕk(j)+ ψk(j)]ηk + [ϕk(j)− ψk(j)]η†k
}

c†(j) = 1

2

{∑
k

[ϕk(j)+ ψk(j)]η†k + [ϕk(j)− ψk(j)]ηk
}
. (A2)

ϕk and ψk are normalized eigenvectors, which are conveniently calculated by a
diagonalization process, as described in [29].

With free boundary conditions,h1 = hL = 1, the eigenvectors are given by

ϕk(j) = (−1)j
2√

2L+ 1
cos

[
2k − 1

2L+ 1

(
j − 1

2

)
π

]
ψk(j) = (−1)j+1 2√

2L+ 1
sin

(
2k − 1

2L+ 1
jπ

)
(A3)

with k = 1, 2, . . . , L. The off-diagonal energy density profile is expressed as

ε
ff

od (j) = 〈0|σz(j)|ε〉 = 2〈0|c†(j)c(j)|ε〉 (A4)
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where the ground state|0〉 is the fermion vacuum and|ε〉 is the lowest eigenstate with two
fermionic excitations so that one obtains

ε
ff

od (j) = ϕ1(j)ψ2(j)− ϕ2(j)ψ1(j)

= 4

2L+ 1

{
sin

(
π

2L+ 1

)
cos

[
4(j + 1/2)π

2L+ 1

]
− cos

(
π

2L+ 1

)
× sin

[
(2j − 1/2)π

2L+ 1

]}
. (A5)

WhenL � 1, the first term may be neglected and the second one gives the off-diagonal
profile in equation (12) since, for the 2D Ising model,xε = 1 andxs

ε = 2 at the ordinary
surface transition.

When the two boundary spins are fixed one has to puth1 = hL = 0 and then the
Hamiltonian in equation (A1) describes both the++ and the+− boundary conditions.
Instead of solving this problem explicitly one may use the duality properties of the quantum
Ising model [25]. Through a duality transformation, the critical system with++ (+−)
boundary condition is related to the energy (magnetization) sector of the critical free chain†,
with the correspondenceL→ L−1 andj → j−1. Then theε++od (j) energy density profile
is directly given by (A5) with the above substitutions.

To calculate the+− profile one considers the magnetization sector of the free chain,
where the two lowest states areη†1|0〉 andη†2|0〉. Then theε+−od (j) profile is given by

ε+−od (j) = ϕ1(j)ψ2(j)+ ϕ2(j)ψ1(j)

= 16

2L−1
cos

[
(2j−1)π

4L−2

]
sin

[
(j−1)π

2L−1

]{
cos2

[
(2j−1)π

4L−2

]
−sin2

[
(j−1)π

2L−1

]}
.

(A6)

which asymptotically behaves asε+−od (j) ≈ 2 sin(2jπ/L)/L in agreement with the
conformal result in (15).

The +f boundary condition is realized with a vanishing transverse fieldh1 = 0 on
the first spin. Thenσx(1) commutes withH and remains fixed in one of its eigenstates
corresponding toσx(1) = ±1. This introduces a vanishing excitation in the system which
doubles the spectrum. The behaviour of the zero-mode eigenvectors is anomalous:

ϕ0(j) = 0 ψ0(j) = (−1)j+1

√
1

L
. (A7)

The next fermion state is characterized by the eigenvectors

ϕ1(j) = (−1)j
√

2

L
sin

[
(j − 1)π

L

]
ψ1(j) = (−1)j+1

√
2

L
cos

[
(j − 1/2)π

L

]
. (A8)

In terms of eigenvectors the profile is similar to (A5) and, due to the vanishing ofϕ0(j),
it takes the form

ε
+f
od (j) = −ϕ1(j)ψ0(j) =

√
2

L
sin

[
(j − 1)π

L

]
(A9)

in agreement with (15) in the continuum limit.
The results in equations (A5), (A6) and (A9) have been checked numerically on small-

size quantum Ising chains.

† The energy (magnetization) sector corresponds to an even (odd) number of fermion excitations in the system.
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