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Abstract. Off-diagonal profiles¢oq(v) of local densities (e.g. order parameter or energy
density) are calculated at the bulk critical point, by conformal methods, on a strip with
transverse coordinatg for different types of boundary conditions (free, fixed and mixed). Such
profiles, which are defined by the non-vanishing matrix eleni@jgi(v)|¢) of the appropriate
operatord(v) between the ground state and the corresponding lowest excited state of the strip
Hamiltonian, enter into the expression of two-point correlation functions on a strip. They are
of interest in the finite-size scaling study of bulk and surface critical behaviour since they allow
the elimination of regular contributions. The conformal profiles, which are obtained through
a conformal transformation of the correlation functions from the half-plane to the strip, are in
agreement with the results of a direct calculation, for the energy density of the two-dimensional
Ising model.

Following the pioneering work of Fisher and de Gennes [1], the study of order parameter
and energy density profiles near surfaces has been an active field of research during the
past years. These profiles have been calculated at, and near the critical point, in the mean-
field approximation [2], using field-theoretical approaches [3] and through exact solutions
[4,5]. Much progress has also been achieved in their calculation at bulk criticality in
two-dimensional (2D) systems making use of conformal techniques [6-12].

In a semi-infinite 2D system, the profigg(y) of a fluctuating quantity, such as the order
parameter or the energy density, is obtained in the transfer matrix formalism as the diagonal
matrix element(0|¢3(y)|0) of the corresponding operatér in the ground state0) of the
Hamiltonian’H = —In 7, where7 denotes the transfer operator along the surface.

On a strip of infinite length and finite width, one may also consider the off-diagonal
profile ¢pog(v), Wherev is the transverse coordinate. The profile is then defined as the off-
diagonal matrix elemen0|$(v)|¢) between the ground staf@) of the Hamiltonian on
the strip and its lowest excited stdig) leading to a non-vanishing matrix element.

These off-diagonal profiles are commonly used at the bulk critical point to obtain
information about the surface and bulk critical behaviour via finite-size scaling, while
avoiding the regular terms which contribute to the diagonal ones. Actually, in the absence
of an external symmetry-breaking field, an off-diagonal matrix element has to be used to
study the scaling behaviour of the order parameter since the diagonal one vanishes, due to
symmetry. They are also of interest because of their high degree of universality. One may
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mention two recent studies where off-diagonal profiles are considered at bulk criticality: the
spin 1/2—spin 1 Ising quantum chain in [13] and the random Ising quantum chain in [14].

In the following, the scaling form of such off-diagonal matrix elements is obtained
at the bulk critical point for 2D conformally invariant systems. It is deduced from the
asymptotic behaviour of the appropriate two-point correlation function in the half-space
after a conformal transformation to the strip geometry. We consider first symmetric and
then asymmetric boundary conditions on the strip and compare our results to some exact
expressions of the energy-density profiles, obtained in the appendix, for the Ising model
in the extreme anisotropic limit. Since we use conformal methods, non-invariant boundary
conditions, like a finite surface field for which an interesting scaling behaviour has been
recently observed [15, 16], and off-critical systems are here excluded.

Let us first briefly review the Fisher—de Gennes result and its consequence for the profile
on a strip. We consider a non-vanishing proffi¢y) on a semi-infinite 2D conformally
invariant sytem at its critical point with a surface at= 0. It may be the energy
density profile with any type of uniform boundary conditions or the order parameter profile
with fixed boundary conditions. The problem involves a single length scale, the distance
y from the surface. Under a length rescaling by a fadiprthe profile transforms as

¢(y/b) = b*¢(y) so that
d(y) = Ay (1)

where x, is the bulk scaling dimension 0b. Now, making use of the conformal
transformatiorw = (L/m)Inz, with z = x +iy = p € andw = u + iv one obtains
Tu TV
o= exp(T) 0= A (2)
and the local dilatation factor i8(z) = |dw/dz| ™t = mp/L. The half-planey > 0 is
transformed into a strip-oo < u < +00, 0 < v < L with the same boundary conditions
as the half-space on both edges [17]. The profile transforms as [18]

¢ (w) = b(z2)"¢(2) 3)
so that [6]

o) =A[7[; sin(iv)}_%. (4)

One may notice that the surface critical behaviour is hidden in the sine variation. At a
fixed distancd « L from the surface the profile behaves as

o) = Al (14 In?lPxy L2+ -) 5)

in agreement with the Fisher-de Gennes conjecture which gives’aorrection term [1]
with a universal amplitude [9]. Generally, the exponénis expected to give the scaling
dimensionxg of ¢ at any surface transition leading to a non-vanishing profile in the semi-
infinite critical system [7,9,19-21]. Th@(N) model at the special transition (fov < 1

in 2D) provides a counter-example, the surface energy exponent being smallef than
this case [12, 22, 23]

Let us now turn to the calculation of the off-diagonal matrix element. On the critical
semi-infinite system, conformal invariance strongly constrains the form of the connected
two-point correlation functionGgg"(x1 — x2, y1, y2). Applying an infinitesimal special
conformal transformation which preserves the surface geometry, one obtains a system of

T We thank E Eisenriegler for pointing out this exception to us.
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partial differential equations foggs", from which the following scaling form is deduced

[24]

= x2)® + (01— y)?
yiy2 '

Whenw > 1, ordinary scaling leads tg(w) ~ o wherex; is the scaling dimension of

$ at the surface. This limit also correspondsgo>> p, Where, using polar coordinates,
6 may be rewritten as

(6)

Goo (X1 — X2, y1, y2) = (y1Y2) " g(®) w

(PN e
Ggo (P1, P2, 01, 02) ~ (p1p2) ™ <pl> (SinBy singy)*s . @
2

We now consider the connected two-point function at bulk criticality in the strip geometry.
In the same limit, it can be obtained through the conformal transformation of (7) from the
half-plane to the strip geometry with [17]

Gpg (w1, w2) = b(21)"*b(22)"* Gyy (21, 22) (8)
giving:
2x,
Ggo (1 — uz, v1, v2) = (%) " (0102 G o1, p2. 01, 02)
77\ 2% Xy L /TTULN . TV TR
(2) eXp[_L(ul_MZ)] [sin(*;")sin ()] ©)

On the strip, making use of the transfer operatof &t can also be written as an expansion
over the eigenstatgs) of the critical Hamiltoniari+ with eigenvaluest, and ground state
energyEg

GooMus — Uz, v1, v2) = Y (01 (v1)|n) (n$(v2)|0) eXp[—(E, — Eo)(u1 — up)]. (10)
n>0

In the limit p; > p» which corresponds ta; > u, on the strip, the sum is dominated by

the contribution of the lowest exited stdi®) with a non-vanishing matrix element so that

Gy — uz, v1, v2) = (0l (v1)|$) (1 (v2)[0) eXp[—(Ey — Eo)(u1 — uz)). (11)

Comparing with (9) we recover the gap-exponent relation— Eo = wx3/L [17] as a
by-product and we may identify the expression of the off-diagonal matrix element

R ONEY =

with symmetric boundary conditions on the strip. The off-diagonal energy-density profile
for the Ising model given in equation (A5) of the appendix, which is valid for symmetric
free or fixed boundary conditions, agrees with (12) in the continuum limit.

At a fixed distancé < L from the surfacepoq(/), behaving ad. ~*%, is quite appropriate
to perform a finite-size scaling study since the regular term which appeared in (5) is now
avoided. One may notice that the diagonal profile) in (4) is formally recovered with
xg = 0in (12). Finally, in the half-plane limitff — o), the amplitude of the off-diagonal
profile vanishes. This is consistent with the scaling considerations leading to equation (1):
a non-vanishing profile on the semi-infinite system necessarily gives the diagonal profile (4)
on the strip.

Next we consider the case of mixed boundary conditions on the half-space. This means
having different scale-invariant boundary conditiangnd b on the positive and negative
x-axes, respectively, with, b = f (free), + or — (fixed). The plane-to-strip conformal
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transformation leads to different boundary conditiarendb on opposite edges of the strip.

The method employed to determine the scaling behaviour of the two-point function in (6)
can no longer be used since it supposed translation invariance alongdihection which

is now broken by the mixed boundary conditions on the surface. Fortunately, the two-
point correlation functions with mixed boundary conditions have been obtained explicitly
for the Ising model using conformal methods [1&}point correlation functions in the half-
space with mixed boundary conditions are determined by the same differential equation as
a particular 2 + 2-point bulk correlation function. Using the results of Burkhardt and Xue
[11], whenp1/p2 > 1, the asymptotic spin—spin correlation functions read

G~ ~ (p1p2Sing; singy) Y8 [cos@l c0sH, + Sirf 6; Sirf 6, <p2> 4 }
o1

G ~ (p1p2Sin6y siny) /% (cosh; coshy) 2 (13)

1. ; 61 02\ p2
1+ —sinfd;sindtan{ = Jtan{ = ) — +---
<[+ gsmnsnetan( 3 ) an(3) 2 +

whereas the following expressions are obtained for the energy—energy correlation functions

G~ ~ (p1p2sing; sinez)‘l[(l — 45sirf6;)(1 — 45sirf 6,)

+64 sirt 6, sir? 6, cosh, cos, <p2) +.- } (14)
P1

Gl ~ (p1p2Sindy singy) ™t [cos@l cosb, + 8 sirt 6, sir? 6, <’Zz> + - } )

1
Making use of the conformal transformation to the strip geometry as in the first line
of equation (9) and comparing to the expansion of the correlation function on the strip
with asymmetric boundary conditions, one may identify the profiles. Since the correlation
functions in (13) and (14) are the unconnected ones, the expansion in (10) now contains
the termn = 0. In the limitu; — uy > 1, the leading contribution is the product of the
diagonal profilesp (v1)¢ (v2), and the next term contains the product of the off-diagonal
ones, as before. In this way, one obtains

i~ () fam(20)]

ot~ (2) on(7) oG] ()
o= (£) () eo7)

£ad (v) ~ (i)lsi”(n;)

for the off-diagonal order parameter and energy density profiles. The results of a direct

calculation of the off-diagonal energy density profiles, in equations (A6) and (A9) of the

appendix, are in agreement with the two last equations of (15) in the continuum limit.
Diagonal profiles on strips with asymmetric boundary conditions for the Igingtate

Potts andO(N) models can be found in references [8,10-12] where they were deduced

from the appropriate one-point functions in the half-plane.

(15)
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With mixed boundary conditions the correction termpiy p; gives a first gap vanishing
asx/L on the strip: the connection with surface exponents we had before is lost. Contrary
to the case of symmetric boundary conditions in equations (4) and (12), there is no simple
functional form adapted to the different boundary conditions. The diagonal profiles generally
contain a regular leading contribution in their surface finite-size scaling behaviour whereas
the off-diagonal ones behave ds P« with @)y = Ds- = )y = 2 and
(x5 =1/2.

One may notice that diagonal and off-diagonal profiles obtained in [14] for the random
Ising quantum chain are in quite good agreement with the conformal results given above
although the system, which is strongly anisotropicndg conformally invariant. It would
be interesting to check whether this is peculiar to the Ising model or if it holds true for
other 2D anisotropic systems as well.

We thank H Rieger, M Henkel and D Karevski for helpful discussions and E Eisenriegler
for a critical reading of the manuscript. Fl is indebted to the Hungarian National Research
Fund for financial support under grants no OTKA TO12830, 17485 and 23642.

Appendix

In this appendix, we calculate the off-diagonal energy density profiles on a strip for the
Ising model with different boundary conditions. We work in the extreme anisotropic limit
[25] where the critical Hamiltonian reads

1 L-1 L-1
H=-3 [ ox(Nox(j+ 1 + Y 0:(j) + o= (D) + hLoz(L>] (A1)
j=1

j= j=2

whereo, (j) ando,(j) are Pauli matrices at site The diagonization proceeds in two steps
[26, 27]: first the Hamiltonian is rewritten as a quadratic form in fermion operatdg)
andc(j), using the Jordan—-Wigner transformation [28] and then it is diagonalized through
a canonical transformation to new fermion operataisand Nk, such that

1
=5 {Z[Wk(j) + (DI + Lo () — Kﬁk(j)]ﬂi}
X

1
=3 iZ[wk(j) + Y DInf + o) — w(mnk} . (A2)
k

¢r and vy, are normalized eigenvectors, which are conveniently calculated by a
diagonalization process, as described in [29].
With free boundary conditiong;; = h; = 1, the eigenvectors are given by

o) = (1 2 cos[zk -1 (j - 1) n]
V2L +1 2L +1 2

() = (=17 +? 2 sin ( k=1 'n) (A3)
= JoL+1o \2L+1’
with k =1, 2,..., L. The off-diagonal energy density profile is expressed as

Ll (j) = (0o, (j)le) = 200l (j)e()le) (A4)
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where the ground stat@) is the fermion vacuum ang) is the lowest eigenstate with two
fermionic excitations so that one obtains

£04 (1) = e1(NV2()) — 020 ¥ ()

4 ) T 4(j + 1/2n 7
= ——sin cos — cos
2L +1 2L +1 2L +1 2L +1

. [(2j —1/2)7n
xsm|: 2L+ 1 “ (A5)
When L > 1, the first term may be neglected and the second one gives the off-diagonal
profile in equation (12) since, for the 2D Ising model,= 1 andx? = 2 at the ordinary
surface transition.

When the two boundary spins are fixed one has to/qu= 4, = 0 and then the
Hamiltonian in equation (Al) describes both thet and the+— boundary conditions.
Instead of solving this problem explicitly one may use the duality properties of the quantum
Ising model [25]. Through a duality transformation, the critical system with (+-)
boundary condition is related to the energy (magnetization) sector of the critical freg,chain
with the correspondende — L —1 andj — j—1. Then thes/{ (j) energy density profile
is directly given by (A5) with the above substitutions.

To calculate thet+— profile one considers the magnetization sector of the free chain,

where the two lowest states av§|0) and n£|0). Then thes; (j) profile is given by
gga (1) = 01(NV2()) + @2()¥1(j)

16 @j-Dr . [(-Dnr @j-Drl _L[(—Dn
= 2L—1COS|: 4L—2 }S'n[ 201 } {Cosz[ 4L—2 ]_S'nz[ 2L—1 “
(A6

which asymptotically behaves as'y (j) ~ 2sin2jz/L)/L in agreement with the
conformal result in (15).

The + f boundary condition is realized with a vanishing transverse figld= 0 on
the first spin. Thers, (1) commutes with{ and remains fixed in one of its eigenstates
corresponding t@, (1) = 4+1. This introduces a vanishing excitation in the system which
doubles the spectrum. The behaviour of the zero-mode eigenvectors is anomalous:

. 1
@o(j) =0 Yo(j) = <—1>f+1\/: . (A7)

The next fermion state is characterized by the eigenvectors

NP 2 . [(G—-Dn
p1(j) =( 1)]\/ZS|nI:Li|

2 i —1/2
V1(j) = (—1)”1\/: COS[(]L/)”} : (A8)

In terms of eigenvectors the profile is similar to (A5) and, due to the vanishipg(¢§,
it takes the form

V2 [(j—l)N] (A9)

e (j) = —p1(NYo(j) = “Esin| =

in agreement with (15) in the continuum limit.
The results in equations (A5), (A6) and (A9) have been checked numerically on small-
size quantum Ising chains.

1 The energy (magnetization) sector corresponds to an even (odd) number of fermion excitations in the system.
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